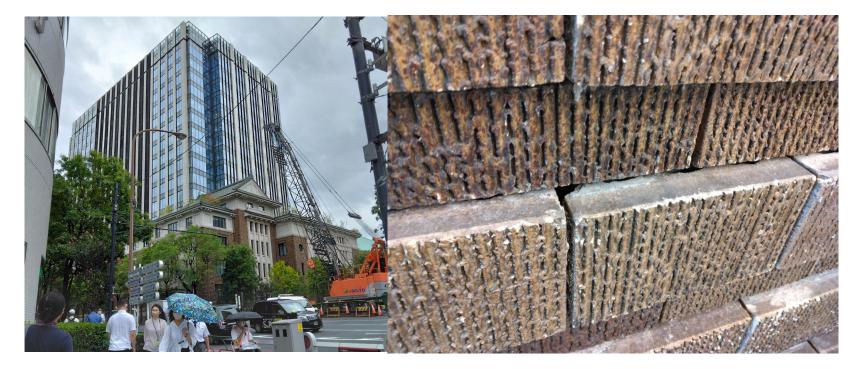
【資源循環技術・システム表彰】

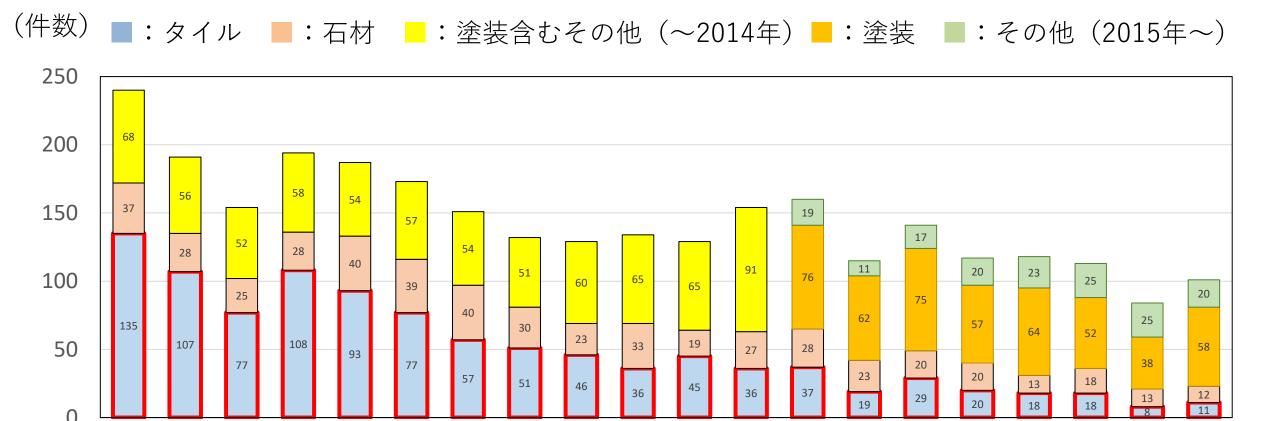
解体・改修建物から回収したタイルのリユース技術開発


清水建設株式会社 竹本 喜昭、小島 静、平井 直樹、深見 利佐子、李 恒協力:株式会社LIXIL 建物改修、解体に際して、 タイル外装をコンクリートと一緒にガラとして廃棄するケースは多い 上手に再利用されている案件もあるが、数は少ない

羽島市庁舎

竣工:1959年

解体:2025年

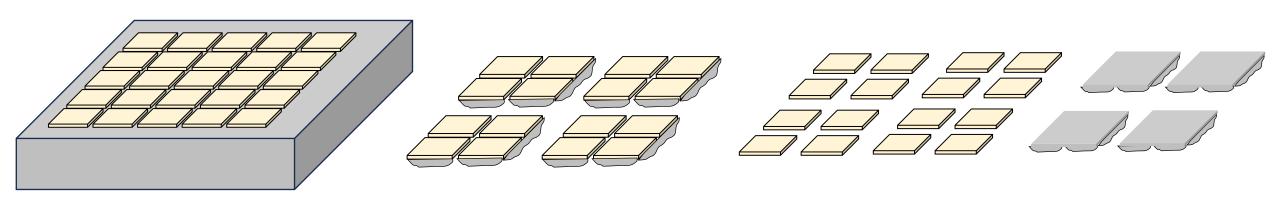


九段会館本館

竣工:1934年 改修:1994年、2022年

タイルを建物一部で再利用

タイルはバブル期にかなりの数が施工されたと考えられ2003年以降は減少 ⇒ストック量が膨大で、解体・改修によって廃棄数が増加すると考えられる



2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

外装CWの仕上げ種類別案件数の推移(出典:コンクリートカーテンウォール工業会)

タイル再生までの手順

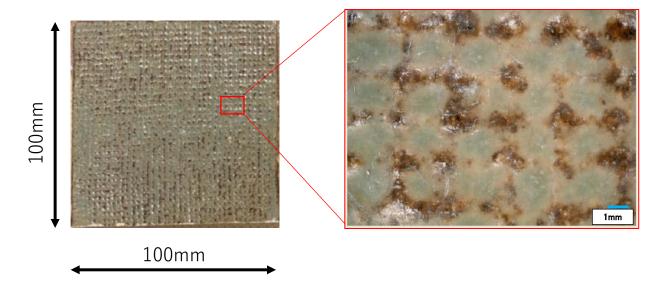
床や壁のタイルの多くは、モルタルでコンクリート下地に張付けられている

床や壁のタイル

床や壁から 塊で取り外す

タイル単体とモルタルに 分離して再利用

取外し作業では、 それなりの破損は存在


無傷で取り出せたタイルは 確実に再生したい

対象としたタイル

1953年(72年経過)の木造建物 改修後にタイルを可能な限り再利用する要望

バルコニータイル

タイル表面の詳細 格子状に凹凸のあるタイル下地に緑色釉薬の組合わせ 1950年代(昭和25年頃)の建物に比較的多く見られる

約2,900枚(約42m²) のうち取外しで破損、 約2,500枚(約35m²) が対象 ⇒このタイル表面の釉薬にダメージ与えず、 裏面のモルタルを綺麗に除去したい

従来のモルタル除去方法

LIXILにて、通常の酸処理による除去を実施

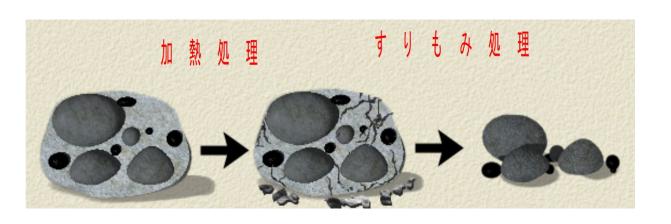
酸でモルタル(カルシウム成分)を溶解し、脆弱化させて金ブラシで削り取る

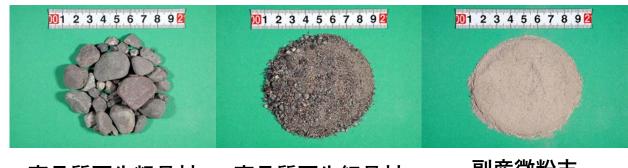
5%塩酸に24時間浸漬

金ブラシで研削

多量の水で洗浄

除去効果の結果


【問題点】


- ・時間が掛かる
- ・酸の濃度はモルタルの付着量によって調整
- ・モルタルの量が多いと溶解反応が途中で停止
- ・タイル内部には酸が残存する可能性
- ・処理後の酸や除去したモルタルは、中和や洗浄が必要

- ⇒3週間から6週間ほど
- ⇒作業に慣れた作業者の判断
- ⇒モルタル研削の後に再浸漬を繰り返す
- ⇒タイル変色や金属発錆の恐れがあり十分な洗浄が必要
- ⇒大量の水資源が必要

加熱処理の発想

コンクリートガラより高品質の再生骨材を加熱処理によって取り出す方法

高品質再生粗骨材

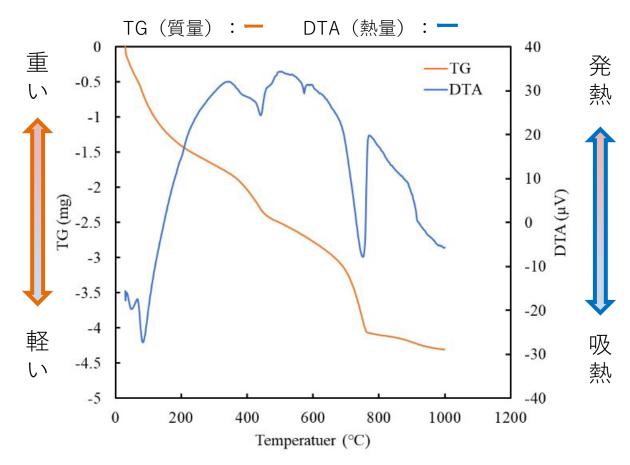
高品質再生細骨材

副産微粉末 (セメント成分)

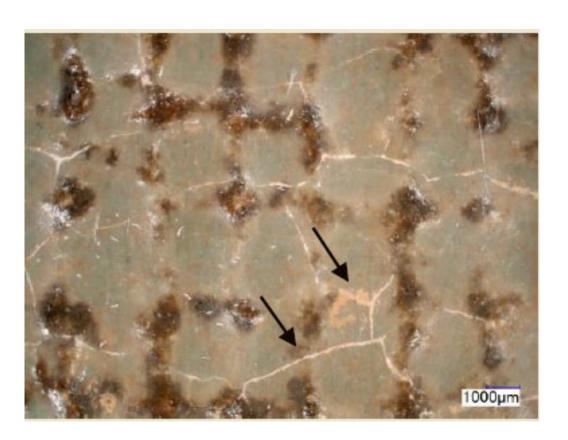
【加熱すりもみ法】

- ・600°C以上の加熱でセメント成分が脆弱化
- ・すりもみ機で骨材とセメント成分を分離

酸による処理も考えられるが、


<問題点>

- ・酸が残るとコンクリートに悪影響 ⇒洗浄には大量の水が必要
- ・処理に時間がかかる
- ・微粉末の処理がより困難になる


湿式処理よりも乾式処理が望ましい

加熱処理のポイント

温度が高いと…**モルタルは取れやすい ⇔ 釉薬にダメージ** 温度上昇速度、最高温度、温度保持時間、冷却速度のバランスがポイント

タイル裏面モルタルの熱分析結果 600° C~ 750° Cで炭酸カルシウムの脱炭酸反応 $CaCO_3$ ⇒ $CaO+CO_2$

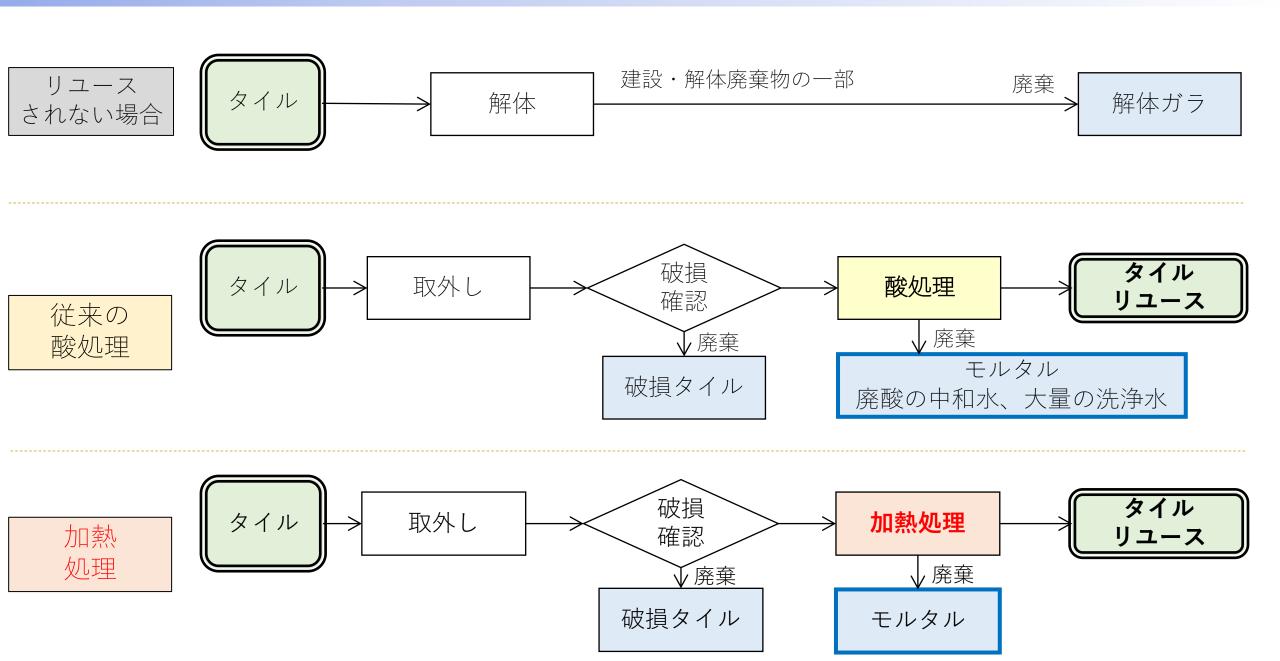
800°C 6時間加熱処理後の表面 表面釉薬に微細なクラックや変色が発生

酸処理と加熱処理を作業時間、処理後の表面状態で比較・検討

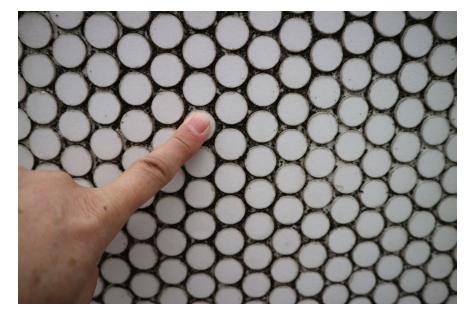
処理方法と手順	処理前	処理後	評価	色差(⊿E)
【1.5%塩酸】 清水浸漬:1W 酸浸漬 :14h 研磨処理:1h 清水浸漬:1D 乾燥 :1D Total:231h		50	全体的に 白色に変化	3.01
【700°C加熱】 昇温速度:100°C/h(7h) 温度保持:1h 自然冷却:16h 研磨処理:1h Total:25h	× 2/1-5	* 771s	部分的に 茶色が 微増	1.00

※LIXILにて、比較試験および測定・評価

モルタルの除去しやすさは、 酸処理 > 加熱処理 ⇒金ブラシを砥石に変えることで対応できる


【1.5%塩酸浸漬】

No 事i		事前 浸漬回数			重量	差異	除去率		
	事前			砥石研 削後	ブラッシ ング 除去	砥石研削	ブラッシ ング	砥石研削	評価
A-1	84.00	6	61.46	-	22.54	1 -	100.0%	_	0
A-2	72.04	2	69.76	-	2.28	-	100.0%	_	0
A-3	74.82	3	71.2	-	3.62	_	100.0%	_	0
A-4	61.63	1	60.43	_	1.20	_	100.0%	====	0
A-5	71.46	5	64.49	_	6.97	_	100.0%	_	0
A-6	78.55	3	75.23	_	3.32	-	100.0%	_	0
A-7	66.88	1	65.75	_	1.13	_	100.0%	_	0
A-8	72.19	1	71.73	10-	0.46	-	100.0%	_	0
A-9	69.48	2	68.04	-	1.44	-	100.0%	_	0
平均	72.34	2.67	67.57	_	4.77	_	100.0%	-	


【700°C加熱】

焼成前		焼成後			重量差異		除去率		
No	事前	ブラッシ ング前	ブラッシ ング後	砥石研 削後	ブラッシ ング除去	砥石研削	ブラッシ ング	砥石研削	評価
4-1	73.43	72.77	68.8	68.71	4.63	4.72	98.1%	100%	0
4-2	74.83	74.33	73.05	73.05	1.78	1.78	100.0%	-	0
4-3	75.42	74.89	72.11	72.02	3.31	3.4	97.4%	100%	0
4-4	64.02	63.65	62.03	61.86	1.99	2.16	92.1%	100%	Δ
4-5	74.4	73.68	68.89	67.31	5.51	7.09	77.7%	100%	×
4-6	72.65	72.12	70.1	69.25	2.55	3.4	75.0%	100%	×
4-7	62.96	62.45	62.08	61.77	0.88	1.19	73.9%	100%	Δ
4-8	68.26	67.79	67.47	67.44	0.79	0.82	96.3%	100%	0
4-9	65.37	64.88	63.48	63.44	1.89	1.93	97.9%	100%	0
平均	70.15	69.62	67.56	67.21	2.59	2.94	89.8%	100%	

作業効率よりも、タイル表面の釉薬にダメージを与えない観点から、加熱処理方法を採用

- ・案件適用実積を増やす
 - ⇒タイルが再利用できる技術を社内外に広める
- ・再利用タイルには**値段以上の価値**があることをPRする
 - ⇒時が経つほど**レガシー的価値上昇**、焼直しより味
- ・今後に増加が見込まれる弾性接着剤への対応
 - ⇒酸に溶解しないため**加熱処理が効果的**
- ・人と環境に優しいことを可視化する
 - ⇒CO₂排出量算出と削減検討
 - ⇒短時間作業、楽作業

42年経過の円形モザイクタイル

ご清聴ありがとうございました